Publications in 2020

Osteologie 2020, doi: 10.1055/a-1206-6663.

 

Knorpel-Knochenmark-Mikro-Konnektoren im subchondralen Knochen

Shahed Taheri, Kai O. Böker, Wolfgang Lehmann, Arndt Friedrich Schilling

 

Abstract: The interaction of the subchondral bone with the articular cartilage is of fundamental importance for joint physiology. Studies on animal and human models have suggested that the lower margin of the articular cartilage is connected to the medullary cavity via small defects or microchannels. While these cartilage-bone marrow micro-connectors (CMMC) can potentially be crucial for molecular exchange, bone-cartilage crosstalk, and even cartilage nutrition, the current knowledge regarding them is limited and incoherent. This review summarizes the so far described characteristics of this anatomical feature in different species, explores recurring patterns in the literature, and discusses its potential functionality.


Int J Mol Sci 2020 May 30;21(11):3924. doi: 10.3390/ijms21113924.

 

Norepinephrine Inhibits the Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells via β2-Adrenoceptor-Mediated ERK1/2 and PKA Phosphorylation

Jessica Hedderich, Karima El Bagdadi, Peter Angele, Susanne Grässel, Andrea Meurer, Rainer H Straub, Frank Zaucke, Zsuzsa Jenei-Lanzl

 

Abstract: Bone marrow-derived mesenchymal stem cells (BMSCs) represent an alternative to chondrocytes to support cartilage regeneration in osteoarthritis (OA). The sympathetic neurotransmitter norepinephrine (NE) has been shown to inhibit their chondrogenic potential; however, their proliferation capacity under NE influence has not been studied yet. Therefore, we used BMSCs obtained from trauma and OA donors and compared the expression of adrenergic receptors (AR). Then, BMSCs from both donor groups were treated with NE, as well as with combinations of NE and α1-, α2- or β1/2-AR antagonists (doxazosin, yohimbine or propranolol). Activation of AR-coupled signaling was investigated by analyzing ERK1/2 and protein kinase A (PKA) phosphorylation. A similar but not identical subset of ARs was expressed in trauma (α2B-, α2C- and β2-AR) and OA BMSCs (α2A-, α2B-, and β2-AR). NE in high concentrations inhibited the proliferation of both trauma and OA BMCSs significantly. NE in low concentrations did not influence proliferation. ERK1/2 as well as PKA were activated after NE treatment in both BMSC types. These effects were abolished only by propranolol. Our results demonstrate that NE inhibits the proliferation and accordingly lowers the regenerative capacity of human BMSCs likely via β2-AR-mediated ERK1/2 and PKA phosphorylation. Therefore, targeting β2-AR-signaling might provide novel OA therapeutic options.


F1000Res 2020 May 4;9:F1000 Faculty Rev-325. eCollection 2020. doi: 10.12688/f1000research.22115.1.

 

Recent advances in the treatment of osteoarthritis

Susanne Grässel, Dominique Muschter

 

Abstract: Osteoarthritis (OA) is one of the most debilitating diseases and is associated with a high personal and socioeconomic burden. So far, there is no therapy available that effectively arrests structural deterioration of cartilage and bone or is able to successfully reverse any of the existing structural defects. Efforts to identify more tailored treatment options led to the development of strategies that enabled the classification of patient subgroups from the pool of heterogeneous phenotypes that display distinct common characteristics. To this end, the classification differentiates the structural endotypes into cartilage and bone subtypes, which are predominantly driven by structure-related degenerative events. In addition, further classifications have highlighted individuals with an increased inflammatory contribution (inflammatory phenotype) and pain-driven phenotypes as well as senescence and metabolic syndrome phenotypes. Most probably, it will not be possible to classify individuals by a single definite subtype, but it might help to identify groups of patients with a predominant pathology that would more likely benefit from a specific drug or cell-based therapy. Current clinical trials addressed mainly regeneration/repair of cartilage and bone defects or targeted pro-inflammatory mediators by intra-articular injections of drugs and antibodies. Pain was treated mostly by antagonizing nerve growth factor (NGF) activity and its receptor tropomyosin-related kinase A (TrkA). Therapies targeting metabolic disorders such as diabetes mellitus and senescence/aging-related pathologies are not specifically addressing OA. However, none of these therapies has been proven to modify disease progression significantly or successfully prevent final joint replacement in the advanced disease stage. Within this review, we discuss the recent advances in phenotype-specific treatment options and evaluate their applicability for use in personalized OA therapy.


Int J Mol Sci. 2020 Mar 18;21(6):2085. doi: 10.3390/ijms21062085.


Adrenoceptor Expression during Intervertebral Disc Degeneration
Johannes Kupka, Annika Kohler, Karima El Bagdadi, Richard Bostelmann, Marco Brenneis, Christoph Fleege, Danny Chan, Frank Zaucke, Andrea Meurer, Marcus Rickert, Zsuzsa Jenei-Lanzl


Abstract: Healthy and degenerating intervertebral discs (IVDs) are innervated by sympathetic nerves, however, adrenoceptor (AR) expression and functionality have never been investigated systematically. Therefore, AR gene expression was analyzed in both tissue and isolated cells from degenerated human IVDs. Furthermore, human IVD samples and spine sections of wildtype mice (WT) and of a mouse line that develops spontaneous IVD degeneration (IVDD, in SM/J mice) were stained for ARs and extracellular matrix (ECM) components. In IVD homogenates and cells α1a-, α1b-, α2a-, α2b-, α2c-, β1-, and β2-AR genes were expressed. In human sections, β2-AR was detectable, and its localization parallels with ECM alterations. Similarly, in IVDs of WT mice, only β2-AR was expressed, and in IVDs of SM/J mice, β2AR expression was stronger accompanied by increased collagen II, collagen XII, decorin as well as decreased cartilage oligomeric matrix protein expression. In addition, norepinephrine stimulation of isolated human IVD cells induced intracellular signaling via ERK1/2 and PKA. For the first time, the existence and functionality of ARs were demonstrated in IVD tissue samples, suggesting that the sympathicus might play a role in IVDD. Further studies will address relevant cellular mechanisms and thereby help to develop novel therapeutic options for IVDD.


Am J Sports Med. 2020 Mar;48(3):612-623. Epub 2020 Jan 31. doi: 10.1177/0363546519899087.


Integrin α10β1-Selected Mesenchymal Stem Cells Mitigate the Progression of Osteoarthritis in an Equine Talar Impact Model
Michelle L Delco, Margaret Goodale, Jan F Talts, Sarah L Pownder, Matthew F Koff, Andrew D Miller, Bridgette Nixon, Lawrence J Bonassar, Evy Lundgren-Åkerlund, Lisa A Fortier


Background: Early intervention with mesenchymal stem cells (MSCs) after articular trauma has the potential to limit progression of focal lesions and prevent ongoing cartilage degeneration by modulating the joint environment and/or contributing to repair. Integrin α10β1 is the main collagen type II binding receptor on chondrocytes, and MSCs that are selected for high expression of the α10 subunit have improved chondrogenic potential. The ability of α10β1-selected (integrin α10high) MSCs to protect cartilage after injury has not been investigated.

Purpose: To investigate integrin α10high MSCs to prevent posttraumatic osteoarthritis in an equine model of impact-induced talar injury.

Study design: Controlled laboratory study.

Methods: Focal cartilage injuries were created on the tali of horses (2-5 years, n = 8) by using an impacting device equipped to measure impact stress. Joints were treated with 20 × 106 allogenic adipose-derived α10high MSCs or saline vehicle (control) 4 days after injury. Synovial fluid was collected serially and analyzed for protein content, cell counts, markers of inflammation (prostaglandin E2, tumor necrosis factor α) and collagen homeostasis (procollagen II C-propeptide, collagen type II cleavage product), and glycosaminoglycan content. Second-look arthroscopy was performed at 6 weeks, and horses were euthanized at 6 months. Joints were imaged with radiographs and quantitative 3-T magnetic resonance imaging. Postmortem examinations were performed, and India ink was applied to the talar articular surface to identify areas of cartilage fibrillation. Synovial membrane and osteochondral histology was performed, and immunohistochemistry was used to assess type I and II collagen and lubricin. A mixed effect model with Tukey post hoc and linear contrasts or paired t tests were used, as appropriate.

Results: Integrin α10high MSC-treated joints had less subchondral bone sclerosis on radiographs (P = .04) and histology (P = .006) and less cartilage fibrillation (P = .04) as compared with control joints. On gross pathology, less India ink adhered to impact sites in treated joints than in controls, which may be explained by the finding of more prominent lubricin immunostaining in treated joints. Prostaglandin E2 concentration in synovial fluid and mononuclear cell synovial infiltrate were increased in treated joints, suggesting possible immunomodulation by integrin α10high MSCs.

Conclusion: Intra-articular administration of integrin α10high MSCs is safe, and evidence suggests that the cells mitigate the effects of joint trauma.

Clinical relevance: This preclinical study indicates that intra-articular therapy with integrin α10high MSCs after joint trauma may be protective against posttraumatic osteoarthritis.


Bone 2020 Apr;133:115181. Epub 2020 Jan 8. doi: 10.1016/j.bone.2019.115181.


Sensory neuropeptides are required for bone and cartilage homeostasis in a murine destabilization-induced osteoarthritis model
Dominique Muschter, Lutz Fleischhauer, Shahed Taheri, Arndt F Schilling, Hauke Clausen-Schaumann, Susanne Grässel


Abstract: Numerous studies identified a role for the sensory neuropeptides substance P (SP) and alpha calcitonin gene-related peptide (αCGRP) in osteoarthritis (OA) pain behavior. Surprisingly, little attention has been paid on how their trophic effects on cartilage and bone cells might affect structural changes of bone and cartilage in OA pathology. Here, we sought to elucidate sensory neuropeptides influence on structural alterations of bone and cartilage during murine OA pathophysiology. OA was induced by destabilization of the medial meniscus (DMM) in the right knee joint of 12 weeks old male C57Bl/6J wildtype (WT) mice and mice either deficient for SP (tachykinin 1 (Tac1)-/-) or αCGRP. By OARSI histopathological grading we observed significant cartilage matrix degradation after DMM surgery in αCGRP-deficient mice after 4 weeks whereas Tac1-/- scores were not different to sham mice before 12 weeks after surgery. Indentation-type atomic force microscopy (IT-AFM) identified a strong superficial zone (SZ) cartilage phenotype in Tac1-/- Sham mice. Opposed to WT and αCGRP-/- mice, SZ cartilage of Tac1-/- mice softened 2 weeks after OA induction. In Tac1-/- DMM mice, bone volume to total volume ratio (BV/TV) increased significantly compared to the Tac1-/- Sham group, 2 weeks after surgery. WT mice had reduced BV/TV compared to αCGRP-/- and Tac1-/- mice after 12 weeks. Increased calcified cartilage thickness and medial condyle diameter were detected in the medial tibia of all groups 8 weeks after OA induction by nanoCT analysis. Meniscal ossification occurred in all OA groups, but was significantly stronger in the absence of neuropeptides. Increased serum concentration of the respective non-deleted neuropeptide was observed in both neuropeptide-deficient mice strains. Both neuropeptides protect from age-related bone structural changes under physiological conditions and SP additionally demonstrates an anabolic effect on bone structure preservation in a pathophysiological situation. Both neuropeptide deficient mice display an intrinsic structural cartilage matrix phenotype that might alter progression of cartilage degeneration in OA.

Contact

Prof. Dr. rer. nat. Susanne Grässel

University Hospital Regensburg

Orthopedic Surgery, Div. Experimental Orthopedics

Biopark I - ZMB

Am Biopark 9

D-93053 Regensburg

 

Tel.: +49 (0) 941 943 5065

Fax: +49 (0) 941 943 5066

E-mail: susanne.graessel@ukr.de